MAP[®] AQ PU1 AND MAP[®] AQ PUK: WATER-BORNE COATINGS AS ALTERNATIVES TO HIGH SPACE LEGACY PU1 AND PUK COATINGS

G. Sierra⁽¹⁾, S. Reymond⁽¹⁾, P. Nabarra⁽²⁾, S. Perraud⁽²⁾, O. Guillaumon⁽¹⁾

⁽¹⁾ MAP SPACE COATINGS, ZI de Bonzom – 1 Rue Paul Maes, 09270 Mazères, France, g.sierra@map-coatings.com
⁽²⁾ CNES – 18 guerra Edouard Bolin, 31401 Toulouse Cedar 0, Erance, Sophia Parraud@anes.

⁽²⁾ CNES – 18 avenue Edouard Belin, 31401 Toulouse Cedex 9, France, Sophie.Perraud@cnes.fr

ABSTRACT

To substitute PU1 and PUK coatings, MAP[®] AQ PU1 and MAP[®] AQ PUK coatings have been exposed to ageing tests in several industrial configurations.

For MAP[®] AQ PU1, E' and MAP[®] HpO11 primers were used on the most used substrates. Two curing conditions were used: (1) a minimum of 3 h at 23°C and 55% RH to allow the water to evaporate, then a minimum of 15 h at 70°C (FC), and (2) a minimum of 28 days at 23°C and 55% relative hygrometry (RT).

For MAP[®] AQ PUK, AM1109 and MAP[®] HpO11 primers were used on the most used substrates. The same two curing conditions as those used for MAP[®] AQ PU1 were tested.

Product characterization (outgassing, solar absorptance, emissivity, adhesion and electrical surface resistance) was performed at the initial state and after the ageing tests were compliant. These results and those issued from the initial qualifications of the products are summarized in this paper.

1. INTRODUCTION

Since its creation in 1986, MAP has developed numerous products for the space industry. Most of these products are coatings, adhesives, varnishes, or greases.

PU1 and PUK are black thermal control coatings for use on satellites. These two products are low outgassing polyurethane coatings. PU1 is an electrical insulant, whereas PUK is electrically conductive.

In an effort to propose green products, safer for humans and the environment, MAP[®] AQ PU1 and MAP[®] AQ PUK were developed some years ago [1-3] as a substitute for PU1, and PUK. MAP[®] AQ PU1 and MAP[®] AQ PUK are formulated without organic solvents that do not comply with new European environmental regulations (REACH).

As the PU1 and PUK have been used since the 1980s, numerous configurations (substrate + primer + coating) were qualified for space applications. The substrates are mainly metallic (Al alloys, Ti alloys, Invar, Stainless steel, etc.), but organic ones were also used (Kapton[®], CFRP, etc.). Several adhesion primers were used, such as silane primers: E' [4] and PSX [5] or wash-primer: MAP[®] HpO11 [6]. Silane primers are used for the waterborne MAP[®] AQ PU1 and MAP[®] AQ PUK coatings: E' and AM1109 [7]. A delta-qualification was defined to propose an alternative to most PU1 and PUK configurations with equivalent curing conditions. The most used configurations were identified, and then a complete qualification was performed:

- 1. Damp heat test: 7 days at 50°C and 90% RH
- 2. Thermal cycling test in a vacuum: 35 cycles between -170°C and 130°C.

This paper first presents the properties of MAP[®] AQ PU1 and MAP[®] AQ PUK in their initial state. These properties are compared to those of PU1 and PUK. Secondly, the results after ageing tests are presented.

2. MATERIALS, PROCESSES AND TECHNIQUES

2.1. Materials and processes

MAP[®] AQ PU1 and MAP[®] AQ PUK are two-component waterborne coatings. For each product, the base is a mix of waterborne polyurethane, pigments and several additives, which give it its electrical, rheological, and mechanical properties. The hardener is composed of a mix of cross-linkers.

To obtain the final material, the base, and the hardener are mixed in the following weight proportions, respectively:

- MAP[®] AQ PU1: Base / Hardener: 91 / 9
- MAP[®] AQ PUK: Base / Hardener: 93 / 7

To get the proper viscosity, it is mandatory to dilute the mix using MAP[®] AQ thinner. Depending on the size and shape of the parts, the thinning ratio can be varied $10 \pm 5\%$.

The mix is then applied using spray gun pulverization. For instance, a Kremlin S3 spraying gun [8] with an AM head and a No. 12 nozzle can be used with the following parameters (Table 1).

Table 1. Splay gui balameters	Table 1	. Sprav	gun	parameters
-------------------------------	---------	---------	-----	------------

Parameter	Value
Below output	1.5 turns
Output	3 turns
Pressure	2.0 bar
Vector gas	Oil-free, compressed air

Regarding the application conditions, the nominal values are listed hereunder in Table 2.

Table 2. Nominal application conditions

Parameter	Nominal conditions
Temperature	$18^{\circ}C \le T \le 25^{\circ}C$
Relative	$40\% \leq RH^1 \leq 60\%$
hygrometry	

To reach the final thickness, the following cross coating steps are proposed (Table 3).

The number of crossed coats depends upon the complexity, shape and size of the parts. Sufficient drying must be allowed between coats to achieve a flat appearance.

Table 3. Application parameters

Coating	Thickness range (µm)	Cross coats	
MAP [®] AQ PU1	40 - 80	1 mist coat + 2 to 3 crossed coats	
MAP® AQ PUK	40 - 90	2 to 4	

Two standard curing processes are possible and correspond to:

 Minimum 3 h at 23°C and 55% RH to allow the water to evaporate, then 15h minimum at 70°C, referred to as the Fast-curing process hereafter (FC); (2) 7 days minimum at 23°C and 55% relative hygrometry, referred to as RT for room temperature hereafter.

MAP[®] AQ PU1 has been qualified with E' primer [4]. E' primer is a silane-primer used on most industrial substrates, both metallic and composites.

MAP[®] AQ PUK has been qualified with AM1109 primer [7]. AM1109 primer is a silane-primer used on most industrial substrates, both metallic and composites.

The main characteristics of MAP[®] AQ PU1 [9] are listed in Table 4 and Table 5.

Table 4. Functional properties of MAP[®] AQ PU1 comapred to those of PU1

Properties	MAP [®] AQ	PU1
Solar absorptance	0.95 ± 0.02	0.96 ± 0.02
Infrared	0.90 ± 0.03	0.88 ± 0.04
RML (%)	0.90	0.39
CVCM (%)	0.00	0.04

Table 5. General properties of MAP[®] AQ PU1 cured by the FC process

Properties	MAP [®] AQ PU1	PU1
Typical thickness (µm)	40 - 80	40 - 80
Density	1.21 ± 0.05	1.12 ± 0.05
Solids content (%)	45 ± 3	64 ± 3
Viscosity (s)	50 ± 10^2	47 ± 7^{3}
V.O.C. (g.L ⁻¹)	27	521
Theoretical consumption at 50 µm (m ² .Kg ⁻¹)	8.1	7.6
Theoretical dry film weight (g.m ⁻ ² .µm ⁻¹)	1.14	1.4

The main characteristics of $MAP^{\circledast} AQ PUK$ [10] are listed in Table 6 and Table 7.

¹ RH: Relative hygrometry

² Afnor cup 4 at 20°C (Base + Hardener + Thinner)

³ Afnor cup 2.5 at 20°C (Base + Hardener + Thinner)

Properties	MAP® AQ PUK	PUK
Solar absorptance	0.95 ± 0.02	0.96 ± 0.02
Infrared emittance	0.88 ± 0.03	0.91 ± 0.03
RML (%)	0.72	0.56
CVCM (%)	0.00	0.00

Table 6. Functional properties of MAP[®] AQ PUK compared to those of PUK

Table 7. General properties	of MAP® AQ	PUK compared
to those of PUK		

Properties	MAP [®] AQ PUK	PUK
Typical thickness	40 - 90	40 - 80
Density	1.25 ± 0.05	$1.00 \pm$
Solids content (%)	$47 \pm 3\%$	$49\pm3\%$
Viscosity (s)	10 ± 2^4	15 ± 5^5
V.O.C. (g.L ⁻¹)	58	566
$\begin{array}{l} \mbox{Theoretical} \\ \mbox{consumption} & \mbox{at} \\ \mbox{50} \ \mbox{\mum} \ (m^2. \mbox{Kg}^{-1}) \end{array}$	4.5	5.6
Theoretical dry film weight (g.m ⁻² .µm ⁻¹)	1.87	1.23

To propose an alternative to the use of MAP[®] HpO11 primer qualified with PU1 and PUK, this primer has been tested with MAP[®] AQ PU1 and MAP[®] AQ PUK within the framework of this evaluation campaign.

2.2. Techniques

All the characteristics were measured in-house by MAP further to the following ISO standards, which are included in the reference section:

- Solar absorptance [11];
- Infrared emissivity [11];
- Electrical measurements [12];
- Adhesion [13] using Scapa 8705b tape [14].

For the ageing and the environmental tests, CNES also conducted some adhesion tests and electrical resistance measurements.

Outgassing rates were measured in accordance with standard ECSS-Q-ST-70-02C [15]. The measurements were taken at Airbus Toulouse and Elemca Toulouse.

2.3. Ageing tests

Ageing tests were carried out at the CNES facility. Ageing tests are composed of two cumulative steps [16]:

- A damp heat test (DHT) was conducted at 50°C and 95% RH for 7 days;
- Thermal cycling tests were performed under vacuum (VCT). 35 cycles were performed between -170°C and 130°C with a 10-minute plateau at high and low temperatures (gradient = 5°C/min).

Figure 1 - Schematic principle of cumulative ageing tests

Samples were composed of plates measuring 80 mm x 80 mm with a thickness of 2 mm (electrical surface resistance measurement) and plates measuring 40 mm x 40 mm x 2 mm.

3. RESULTS

MAP[®] AQPU1 and MAP[®] AQ PUK have been already qualified for space applications.

Additional tests were carried out within the scope of this study to validate the outgassing of additional systems and curing conditions.

For the ageing tests, the acceptance criteria were no degradation in adhesion, solar absorptance, infrared emissivity. For MAP[®] AQ PUK only, the electrical surface resistance must be under $1 \times 10^5 \Omega/\Box$.

3.1. OUTGASSING DATA

3.1.1. MAP® AQ PU1

The outgassing properties were measured at the Elemca facility on an $E' + MAP^{\textcircled{B}} AQ PU1$ system that had been cured for 28 days at 23°C. The results are listed in Table 8 [17].

⁵ Afnor cup 4 at 20°C (Base + Hardener + Thinner)

⁴ Afnor cup 6 at 20°C (Base + Hardener + Thinner)

Table 8. Outgassing results for E' + MAP[®] AQ PU1 cured for 28 days at 23°C and 55% RH

	TML	RML	CVCM
	(%)	(%)	(%)
E' + MAP [®] AQ PU1	0.63	0.36	0.00

For the MAP[®] HpO11 + MAP[®] AQ PU1 system cured by the fast-curing process, the outgassing properties were measured at the Airbus Toulouse facility. The results are listed in Table 9 [18].

Table 9. Outgassing results for MAP[®] HpO11 + MAP[®] AQ PU1 cured for 3h at $23^{\circ}C + 15h$ at $70^{\circ}C$

	TML	RML	CVCM
	(%)	(%)	(%)
MAP [®] HpO11 + MAP [®] AQ PU1	1.35	0.90	0.00

3.1.2. MAP AQ PUK

The outgassing properties were measured at the Elemca facility on the AM1109 + MAP[®] AQ PUK system that had been cured for 28 days at 23° C. The results are listed in Table 10 [17].

Table 10. Outgassing results for AM1109 + MAP[®] AQ PUK cured for 28 days at 23°C and 55% RH

	TML	RML	CVCM
	(%)	(%)	(%)
AM1109 + MAP® AQ PUK	0.28	0.18	0.00

For the MAP[®] HpO11 + MAP[®] AQ PUK system cured by the fast-curing process, the outgassing properties were measured at the Airbus Toulouse facility. The results are listed in Table 11 [18].

Table 11. Outgassing results for MAP^{\circledast} HpO11 + MAP^{\circledast} AQ PUK cured for 3h at 23°C + 15h at 70°C

	TML	RML	CVCM
	(%)	(%)	(%)
MAP® HpO11 + MAP® AQ PUK	0.62	0.45	0.00

3.2. AGEING TESTS

Ageing tests were carried out at the CNES facility during two campaigns. The first test was dedicated to the samples cured by the fast-curing process (FC), and the second was performed on the samples cured at ambient conditions (temperature and relative hygrometry).

3.2.1. MAP® AQ PU1

The E' + MAP[®] AQ PU1 system, cured for a minimum of 3h at 23°C and 55% RH + 15h at 70°C, was applied on:

- Stainless steel 304L
- INVAR
- TA6V
- 2024-T3 Surtec 650
- 6061-T6 Au
- 6061-T6 Ag

All the tests (solar absorptance, infrared emissivity and adhesion) were compliant at the initial state and after ageing.

The MAP[®] HpO11 + MAP[®] AQ PU1 system, cured for a minimum of 3h at 23°C and 55% RH + 15h at 70°C, was applied on:

- 2024-T3
- 2024-T3 Alodine
- 6061-T6 Au
- 6061-T6 Ag
- 2024-T3 Surtec 650
- TA6V
- INVAR
- Cu al
- Stainless steel 304L

All the characteristics (solar absorptance, infrared emissivity and adhesion) were compliant at the initial state and after ageing.

On copper (Cu a1), the use of a primer and no primer (neither E' nor MAP[®] HpO11) were testede prior to MAP[®] AQ PU1 application. All the characteristics (solar absorptance, infrared emissivity and adhesion) were compliant at the initial state and after ageing.

3.2.2. MAP® AQ PUK

The MAP[®] HpO11 + MAP[®] AQ PUK system, cured for a minimum of 3h at 23°C and 55% RH + 15h at 70°C, was applied on:

- 2017-T4
- 6061-T6 Au
- 6061-T6 Ag
- 6061-T6 Ni
- 2024-T3 Alodine
- 2024-T3 Surtec 650
- TA6V
- INVAR + Ag
- INVAR
- Stainless steel 304 L
- Cu a1

All the tests (solar absorptance, infrared emissivity and adhesion) were compliant at the initial state and after ageing.

On copper (Cu a1), the use of a primer and no primer (neither E' nor MAP[®] HpO11) were tested prior to MAP[®] AQ PUK application All the characteristics (solar absorptance, infrared emissivity and adhesion) were compliant at the initial state and after ageing.

The MAP[®] HpO11 + MAP[®] AQ PUK system, cured for a minimum of 3h at 23°C and 55% RH + 15h at 70°C, was applied on:

- 2017-T4
- 6061-T6 Au
- 6061-T6 Ag
- 6061-T6 Alodine
- 2024-T3 Surtec 650
- TA6V
- INVAR + Ag
- INVAR
- Stainless steel
- Cu a1
- CFRP
- 6061-T6 Ni

All the characteristics (solar absorptance, infrared emissivity and adhesion) were compliant at the initial state and after ageing.

On copper (Cu a1), no primer (neither E' nor MAP HpO11) was applied prior to MAP[®] AQ PU1. All the characteristics (solar absorptance, infrared emissivity and adhesion) were compliant at the initial state and after ageing.

Table 12. Characteristics of the E' + MAP[®] AQ PU1 system, cured for a minimum of 3h at 23°C and 55% RH + 15h at 70°C [19]. Thickness of MAP[®] AQ PU1: $66 \mu m$.

Substrate	te $Initial state$ A Adhesion α_s ε_h		Initial state After DH			After DH test	After DH test + VTC			
Substrate			Adhesion	Adhesion	αs	Eh				
SS 304L*	0/5	0.96	0.90	0/5	0/5	0.96	0.90			
INVAR	0/5	0.96	0.90	0/5	0/5	0.96	0.90			
TA6V	0/5	0.96	0.90	0/5	0/5	0.96	0.90			
2024-T3 Surtec 650	0/5	0.96	0.90	0/5	0/5	0.96	0.90			
6061-T6 Au	0/5	0.96	0.90	0/5	0/5	0.96	0.90			
6061-T6 Ag	0/5	0.96	0.90	0/5	0/5	0.96	0.90			

** Stainless steel 304L

Table 13. Characteristics of the MAP[®] HpO11 + MAP[®] AQ PU1 system, cured for a minimum of 3h at 23°C and 55% RH + 15h at 70°C [20, 21]. Thickness of MAP[®] HpO11: 7 μ m. Thickness of MAP[®] AQ PU1: 61 μ m.

Substrate	Initial state Adhesion αs εh		After DH test	After DH test After DH test + V			
Substrate			Adhesion	Adhesion	αs	Eh	
2024-T3	0/5	0.96	0.90	0/5	0/5	0.96	0.90
2024-T3 Alodine	0/5	0.96	0.90	0/5	0/5	0.96	0.90
6061-T6 Au	0/5	0.96	0.90	0/5	0/5	0.96	0.90
6061-T6 Ag	0/5	0.96	0.90	0/5	0/5	0.96	0.90
2024-T3 Surtec 650	0/5	0.96	0.90	0/5	0/5	0.96	0.90
TA6V	0/5	0.96	0.90	0/5	0/5	0.96	0.90
INVAR	0/5	0.96	0.90	0/5	0/5	0.96	0.90
Cu a1	0/5	0.96	0.90	0/5	0/5	0.96	0.90
SS 304L	0/5	0.96	0.90	0/5	0/5	0.96	0.90
Cu a1*	0/5	0.96	0.90	0/5	0/5	0.96	0.90

*: without MAP HpO11 - ** Stainless steel 304L

Table 14. Characteristics of the E' + MAP[®] AQ PU1 system, cured for 28 days at 23°C and 55% RH [22, 23]. Thickness of MAP[®] AQ PU1: 63 to 87 μ m. *: without E' - ** Stainless steel 304L.

Substants	Initial state		After DH test	After DH test + VTC			
Substrate	Adhesion	αs	Eh	Substrate	Adhesion	αs	Eh
2017-T4	0/5	0.96	0.90	0/5	0/5	0.96	0.90
6061-T6 Ag	0/5	0.96	0.90	0/5	0/5	0.96	0.90
SS 304L**	0/5	0.96	0.90	0/5	0/5	0.96	0.90
6061-T6 Au	0/5	0.96	0.90	0/5	0/5	0.96	0.90
6061-T6 Alodine	0/5	0.96	0.90	0/5	0/5	0.96	0.90
CFRP	0/5	0.96	0.90	0/5	0/5	0.96	0.90
Kapton [®] 50 μm	No degradation	0.96	0.90	No degradation	No degradation	0.96	0.90
INVAR	0/5	0.96	0.90	0/5	0/5	0.96	0.90
TA6V	0/5	0.96	0.90	0/5	0/5	0.96	0.90
2024-T3 Surtec 650	0/5	0.96	0.90	0/5	0/5	0.96	0.90
Cu a1*	0/5	0.96	0.90	0/5	0/5	0.96	0.90

	Initial state			After DH test		After DH test + VTC				
Substrate	Adhesion	as	Eh	Rs (Ω/□)	Adhesion	Rs (Ω/□)	Adhesion	as	Eh	Rs (Ω/□)
2017-T4	0/5	0.96	0.88	1350	0/5	9320	0/5	0.96	0.88	1350
6061-T6 Au	0/5	0.96	0.87	3120	0/5	7640	0/5	0.96	0.88	2850
6061-T6 Ag	0/5	0.96	0.87	1480	0/5	7040	0/5	0.96	0.88	2840
6061-T6 Ni	0/5	0.96	0.88	2660	0/5	3450	0/5	0.96	0.88	1250
2024-T3 Alodine	0/5	0.96	0.88	2060	0/5	4800	0/5	0.96	0.88	2690
2024-T3 Surtec 650	0/5	0.96	0.87	2310	0/5	11170	0/5	0.96	0.88	4430
TA6V	0/5	0.96	0.87	1940	0/5	8260	0/5	0.96	0.88	2540
INVAR + Ag	0/5	0.96	0.87	1240	0/5	2020	0/5	0.96	0.88	1330
INVAR	0/5	0.96	0.87	2720	0/5	9080	0/5	0.96	0.88	1880
SS 304 L	0/5	0.96	0.87	2970	0/5	8500	0/5	0.96	0.88	1910
Cu al	0/5	0.96	0.87	2540	0/5	4150	0/5	0.96	0.88	1520
Cu a1*	0/5	0.96	0.88	68	0/5	244	0/5	0.96	0.89	98

Table 15. Characteristics of the MAP[®] HpO11 + MAP[®] AQ PUK system, cured for a minimum of 3h at 23°C and 55% RH + 15h at 70°C [24, 25]. Thickness of MAP[®] HpO11: 6 µm. Thickness of MAP[®] AQ PUK: 70 to 76µm.

*: without MAP HpO11

Table 16. Characteristics of the AM1109 + MAP[®] AQ PUK system, cured for 28 days at 23°C and 55% RH [26, 27]. Thickness of MAP[®] AQ PUK: 58 to 76 μ m.

	Initial state			After DH test		After DH test + VTC				
Substrate	Adhesion	as	Eh	Rs (Ω/□)	Adhesion	Rs (Ω/□)	Adhesion	αs	Eh	Rs (Ω/□)
2017-T4	0/5	0.96	0.88	78	0/5	388	0/5	0.96	0.88	202
6061-T6 Au	0/5	0.96	0.88	43	0/5	88	0/5	0.96	0.88	59
6061-T6 Ag	0/5	0.96	0.88	141	0/5	200	0/5	0.96	0.88	109
6061-T6 Alodine	0/5	0.95	0.88	216	0/5	576	0/5	0.95	0.88	420
2024-T3 Surtec 650	0/5	0.96	0.88	88	0/5	665	0/5	0.96	0.88	359
TA6V	0/5	0.96	0.88	102	0/5	151	0/5	0.95	0.88	52
INVAR + Ag	0/5	0.96	0.88	50	0/5	107	0/5	0.96	0.88	83
INVAR	0/5	0.96	0.88	56	0/5	98	0/5	0.96	0.88	33
SS 304L	0/5	0.96	0.88	91	0/5	236	0/5	0.96	0.88	112
Cu a1	0/5	0.96	0.88	180	0/5	548	0/5	0.96	0.88	187
CFRP	0/5	0.96	0.88	127	0/5	378	0/5	0.96	0.88	174
6061-T6 Ni	0/5	0.96	0.88	66	0/5	578	0/5	0.96	0.88	251
Cu a1*	0/5	0.96	0.88	121	0/5	221	0/5	0.96	0.88	112

*: without AM 1109

3.3. QUALIFIED SYSTEMS

3.3.1. MAP[®] AQ PU1

MAP[®] AQ PU1 has already been qualified for space applications [1]. Using the previous results from this evaluation and adding the results of this campaign, all the systems qualified are listed in the table below.

Table 17. MAP[®] AQ PU1 systems qualified with ambient temperature curing

Substrate	Primer	Origin
2017-T4	E'	This work
Stainless steel	E'	This work
INVAR	E'	This work
2017-T4 Alodine	E'	This work
CFRP	E'	This work
Kapton	E'	This work
TA6V	E'	This work
Cua1	-	This work
TA6V	E'	This work
2024-T3 Surtec 650	Е'	This work
6061-T6 Au	E'	This work
6061-T6 Ag	E'	This work

Table 18. MAP[®] AQ PU1 systems qualified with the fast-curing process

Substrate	Primer	Origin
2024-T3	Е'	Initial qualification
CFRP	Е'	Initial qualification
Kapton	E'	Initial qualification
Alodine	E'	Initial qualification
Surtec 650	E'	Initial qualification
2017-T4	E'	This work
Stainless steel	Е'	This work
INVAR	Е'	This work
TA6V	Е'	This work
2024-T3 Surtec		
650	E'	This work
6061-T6 Au	E'	This work
6061-T6 Ag	E'	This work
2024-Т3	MAP HpO11	This work
2017-T4		
Alodine	MAP HpO11	This work
6061-T6 Au	MAP HpO11	This work
6061-T6 Ag	MAP HpO11	This work

2024-T3 Surtec		
650	MAP HpO11	This work
TA6V	MAP HpO11	This work
INVAR	MAP HpO11	This work
Copper	-	This work
Copper	MAP HpO11	This work

3.3.2. MAP[®] AQ PUK

MAP[®] AQ PUK has been already qualified for space applications [2]. Using the previous results from this evaluation and adding the results of this campaign, all the systems qualified are listed in the table below.

Table 19. MAP[®] AQ PUK systems qualified with ambient temperature curing

Substrate	Primer	Origin
2017-T4	AM1109	This work
6061-T6 Au	AM1109	This work
6061-T6 Ag	AM1109	This work
6061-T6 Ni	AM1109	This work
6061-T6 Alodine	AM1109	This work
6061-T6 Surtec 650	AM1109	This work
TA6V	AM1109	This work
INVAR + Ag	AM1109	This work
Invar	AM1109	This work
Stainless steel	AM1109	This work
Cu a1	AM1109	This work
Cu a1	-	This work
CFRP	AM1109	This work

Substrate	Primer	Origin
		Initial
2024-Т3	AM1109	qualification
		Initial
Alodine	AM1109	qualification
		Initial
Surtec 650	AM1109	qualification
		Initial
Al – Ag	AM1109	qualification
		Initial
Al – Au	AM1109	qualification
		Initial
INVAR	AM1109	qualification
The CV	A M 1100	Initial
TAOV	AM1109	qualification
2017-T4	MAP HpO11	This work
6061-T6 Au	MAP HpO11	This work
6061-T6 Ag	MAP HpO11	This work
6061-T6 Ni	MAP HpO11	This work
6061-T6		This work
Alodine	MAP HpO11	
6061-T6 Surtec		This work
650	MAP HpO11	
TA6V	MAP HpO11	This work
INVAR + Ag	MAP HpO11	This work
Invar	MAP HpO11	This work
Passivated		This work
stainless steel		
X5Cr18-10	MAP HpO11	
Cu a1	-	This work
Cu a1	MAP HpO11	This work

Table 20. MAP[®] AQ PUK1 systems qualified with the fast-curing process

4. CONCLUSION

In order to substitute PU1 and PUK coatings, MAP[®] AQ PU1 and MAP[®] AQ PUK coatings were exposed to ageing tests in several industrial configurations.

For MAP[®] AQ PU1, E' and MAP[®] HpO11 primers were used on the most commonly used substrates. Two curing conditions were used: (1) a minimum of 3h at 23°C and 55% RH to allow the water to evaporate, then for a minimum of 15h at 70°C (FC), and (2) for a minimum of 28 days at 23°C and 55% relative hygrometry (RT).

For MAP[®] AQ PUK, AM1109 and MAP[®] HpO11 primers were used on the most commonly used substrates. The same two curing conditions as those used for MAP[®] AQ PU1 were tested.

All the characterization (outgassing, solar absorptance, emissivity, adhesion and electrical surface resistance) carried out at the initial state and after ageing tests were compliant. These results and those obtained from the initial qualifications of the products are summarized in Tables 17 to 20.

5. REFERENCES

- Qualification report of MAP[®] AQ PU1, CNES report, DCT-TV-TH-NT11-3938, September 23, 2014
- Qualification report of MAP[®] AQ PUK, CNES report, DCT-TV-TH-2015-0007089, April 30, 2015
- Development of green paints, MAP[®] AQ PU1 and MAP[®] AQ PUK, S. Reymond and al., 12th International Symposium on Materials in the Space Environment, ESA ESTEC, Noordwijk, The Netherlands, September 24th-28th, 2012
- 4. MAP, Technical data sheet E'
- 5. MAP, Technical data sheet PSX
- 6. MAP, Technical data sheet MAP[®] HpO11
- 7. MAP, Technical data sheet AM1109
- Kremlin S3 Spray Gun data sheet, S3-Ginstructions-manual-sames-kremlin-582014110uk, <u>https://www.sameskremlin.com/france/en/product-s3-g-hpa-manualairspray-spray-gun-gravity.html</u>
- 9. MAP, Technical data sheet MAP[®] AQ PU1
- 10. MAP, Technical data sheet $MAP^{\text{\tiny (B)}} AQ PUK$
- 11. ECSS-Q-ST-70-09C, Measurements of thermooptical properties of thermal control materials, 2008
- MAP Internal Standard 006/NI, Measurement of electrical surface resistance of antistatic coatings, 2016
- 13. ISO2409, Paints and varnishes cross-cut test, 2007
- 14. Scapa 8705b data sheet
- 15. ECSS-Q-ST-70-02C, Thermal vacuum outgassing test for the screening of space materials, 2008
- 16. ECSS-Q-ST-70-17C, Durability testing of coatings, 2018
- 17. E' + MAP[®] AQPU1 cured at room temperature, outgassing report, Elemca 21T184cR01
- 18. MAP[®] HpO11 + MAP[®] AQPU1 cured by the FC process, outgassing report, Airbus

- 19. E' + MAP[®] AQ PU1 cured by the fast-curing, Application report A2021/142
- 20. MAP[®] HpO11 + MAP[®] AQ PU1 cured by the fastcuring process, Application report A2021/141
- 21. MAP[®] AQ PU1 cured by the fast-curing process, Application report A2021/143
- 22. E' + MAP[®] AQ PU1 cured at room temperature, Application report A2021/220
- 23. MAP[®] AQ PU1 cured at room temperature, Application report A2021/222
- 24. MAP[®] HpO11 + MAP[®] AQ PUK cured by the fastcuring process, Application report A2021/145
- 25. MAP[®] AQ PUK cured by the fast-curing process, Application report A2021/144
- 26. AM1109 + MAP[®] AQ PUK cured at room temperature, Application report A2021/219
- 27. MAP[®] AQ PUK cured at room temperature, Application report A2021/221